ООО "КОНТАКТ"


теплицы, навесы,
козырьки, павильоны

Тел. 8(495) 9999-144
       
  • Главная
  • Контакты
  • Цены
  • Новости
Главное меню
  • Главная
  • Новости
  • Доставка
  • Монтаж
  • Инструкции
  • Цены
  • Контакты
  • Обратная связь
Продукция
  • Теплицы из поликарбоната
    • Теплицы типовые "Сфера"
    • Теплица "Москвичка"
    • Теплицы на заказ
  • Навесы и Металлоконструкции любой сложности
  • Козырьки
  • Беседки
  • Теневые навесы. Беседки. Прогулочные веранды. Детские площадки
  • Павильоны для бассейнов
  • Павильоны со сдвижными секциями
  • Автоматические проветриватели теплиц "УФОПАР-М"
Статьи
  • О поликарбонате
  • Разные
Главная Теплицы из поликарбоната
Главная » Разное » Как выбрать лазерный нивелир для строительства дома

Как выбрать лазерный нивелир для строительства дома


Как выбрать лазерный нивелир (2019) | Лазерные дальномеры, нивелиры | Блог

При любом виде строительных и отделочных работ часто возникает необходимость точно определить вертикаль и горизонталь, построить прямой угол или разметить ровную линию, привязав её к каким-то точкам.

Раньше мастера использовали для этих целей целый арсенал инструментов – уровни, отвесы, правила, красящие нити, и т.д. А сегодня для всего этого можно использовать один универсальный инструмент – лазерный нивелир. С его помощью можно легко «нарисовать» на стене строго вертикальную или горизонтальную опорную линию, спроецировать линию пересечения с любой произвольной плоскостью, определить гладкость пола и потолка, проверить вертикальность стен и дверных проемов.

Соответственно, лазерный нивелир используется:

  • строителями для соблюдения правильной геометрии стен, потолков, откосов и пр.
  • отделочниками для ровной укладки стеновых покрытий, выравнивания пола и стен, переноса на стены и потолки элементов дизайна с дизайн-проекта и т.д;
  • монтажниками инженерных систем для разметки коммуникаций;
  • монтажниками натяжных, подвесных и гипсокартонных потолков;
  • приемщиками свежепостроенных и отремонтированных квартир, офисных и прочих помещений.

Такое разнообразие областей применений этого инструмента привело к появлению множества его разновидностей. Для каждой перечисленных областей потребуются приборы с различными наборами характеристик.

Характеристики лазерных нивелиров

По видулазерные нивелиры подразделяются на точечные, линейные, ротационные и комбинированные – комбинирующие несколько видов в одном корпусе.

Точечный нивелир, как следует из названия, проецирует точку (или несколько точек). Эта точка может отмечать вертикаль или горизонталь относительно места установки нивелира; несколько точек могут отмечать прямой угол с нивелиром на его вершине.

Точечный нивелир можно сравнить с отвесом, который может «висеть» не только по вертикали, но и по горизонтали, и под заданным углом.

Ротационный нивелир «рисует» линию при помощи движущегося луча. Вращающееся зеркало с большой скоростью перемещает луч лазера по окружности, а остающийся от него след сливается для человеческого глаза в сплошную линию. Это позволяет сохранить яркость отметки при увеличении расстояния до нивелира. Такие модели можно применять на открытом воздухе на расстояниях в десятки и даже сотни метров при использовании приемников лазерного сигнала.

Ротационные нивелиры могут использоваться при строительстве и ландшафтных работах.

В линейном нивелире луч лазера проходит через призму, увеличивающую его ширину. В результате на поверхность проецируется не точка, а линия.

В разных моделях угол расхождения луча разный: от 30° у простых лазерных уровней, до 360° у моделей с несколькими лучами или у которых луч проходит сквозь конусную призму.

Линейный нивелир удобно применять для разметки несущих конструкций навесных потолков и стеновых покрытий, для укладки плитки, установки мебели, развешивания картин и пр.

Недостаток линейных нивелиров состоит в том, что из-за прохождения через призму яркость луча снижается. Поскольку мощность лазеров ограничена в целях безопасности, при ярком свете и на большом расстоянии отметка линейного нивелира становится слабо различимой. Особенно это относится к моделям с конусной призмой – в них луч одного лазера распространяется на все 360° и с увеличением расстояния ослабевает очень быстро.

Еще один недостаток моделей с конусной призмой – довольно часто режим автоматического выравнивания в них корректирует только горизонтальный луч, вертикальные (если они есть) остаются невыравненными (т.е. не строго вертикальными).

Зато такие модели с диапазоном нивелирования 360°дешевле ротационных нивелиров и линейных нивелиров с цилиндрическими призмами. Еще один плюс моделей с конусной призмой – горизонтальный луч в них выходит близко к вершине прибора, им можно разметить плоскость очень близко к потолку, что делает их весьма удобными при монтаже подвесных, натяжных и гипсокартонных потолков.

Максимальное расстояние определяет, на каком удалении от прибора отметка лазерного луча еще будет заметна.

Модели с максимальным расстоянием до 10 м пригодны для использования только в небольших помещениях в условиях среднего и слабого освещения. При ярком свете отметка будет различима только, если поднести прибор вплотную к стене.

Значение этого параметра в 10-50 метров позволит использовать нивелир в любых помещениях и на улице в пасмурную погоду и в сумерках.

Для увеличения максимального расстояния используются приемники лучей нивелиров – они позволяют «поймать» лазерный луч на значительном удалении от прибора, даже когда невооруженным взглядом он совершенно неразличим. У некоторых моделей принимающее устройство входит в комплект, для моделей с комплектацией победнее, его придется докупать отдельно при необходимости.

Имейте в виду, что для многих, укомплектованных приемником сигнала, моделей, в руководстве приводится максимальное расстояние именно с использованием принимающего устройства. Без него максимальное расстояние меньше в 3-10 раз.

Для использования на улице в солнечную погоду подходят только ротационные и точечные нивелиры с классом лазера 2 (максимальная мощность лазера, допущенная для использования в бытовой технике) и максимальным расстоянием (без использования приемника) 100 м и более. Но даже у таких моделей на ярком солнечном свету отметка «потеряется» уже на 10-15 метрах.

Немного улучшить ситуацию на открытом воздухе может использование лазера зеленого цвета – с длиной волны 535-550 нм. Человеческий глаз лучше видит зеленый цвет. Однако нивелиры с лазером красного цвета (635-650 нм) более распространены, так как зеленый цвет чаще встречается в окружающем пространстве, а на зеленом фоне зеленая точка различима хуже, чем красная.

Количество лучей (отдельных лазерных светодиодов) определяет функционал нивелира и влияет на яркость линий и отметок. Каждый отдельный луч может быть использован для построения одной линии или одной точки. Обычно один луч в приборе, используется для создания точки или горизонтальной линии, два луча – для создания одной горизонтальной и одной вертикальной линии (2D), три луча – для создания двух вертикальных и одной горизонтальной линии (3D).

В то же время, для построения одной линии могут использоваться два и более луча. Так, круговая 360° линия на линейном нивелире может быть построена одним лучом, прошедшим сквозь конусную призму – а может быть построена четырьмя лучами, расходящимися с углом 90°. Во втором случае точность прибора и яркость лучей будут намного выше, но и стоить он будет дороже.

Система автоматического выравнивания крайне важна, если от разметки требуется не только геометрическая «правильность», но и точное выдерживание горизонталей и вертикалей. Автоматическое выравнивание позволяет скорректировать луч (обычно в пределах 3-5°), если прибор установлен не на горизонтальном основании. На случай, если автоматика не может выровнять луч, в некоторых моделях предусмотрен звуковой сигнал отклонений. Это позволит гарантированно избежать отклонений, но при частом использовании прибора может раздражать – лучше, если эта функция будет отключаемой. Как и само автовыравнивание – бывают ситуации, когда линии должны проходить под небольшим углом к горизонту (например, при заливке наклонных полов, с которых вода должна стекать в определенном направлении).

Наличие точек отвеса позволяет использовать нивелир для контроля вертикали. Точка надир расположена вертикально под прибором, точка зенит – над ним.

Однако следует иметь в виду, что корректно указывать вертикаль эти точки будут, только если у прибора есть функция автовыравнивания, либо если он выровнен вручную или стоит на строго горизонтальной поверхности. Иначе вместо вертикального луча прибор будет испускать луч, направленный перпендикулярно полу (который может быть вовсе не строго горизонтален).

Некоторые простые модели можно подвешивать на небольшом отрезке шнура, образуя некий гибрид лазерного и простого отвеса – в этом случае луч будет строго вертикален, но пользоваться такими нивелирами ненамного удобнее, чем обычным отвесом.

Точность- пожалуй, важнейший параметр нивелира. Она измеряется в мм/м и определяет, на сколько миллиметров допускается отклонение луча на каждый метр удаления от прибора.

Бытовые приборы имеют точность от 0,5 до 1 мм/м. Поскольку расстояния для этих приборов редко превышают 10 м, максимальное отклонение луча у них может быть от 5 мм до 1 см – вполне приемлемо для бытовых условий.

Полупрофессиональные приборы работают на больших расстояниях, и точность им требуется выше – от 0,3 до 0,5 мм/м.

Самые высокие требования по точности предъявляются к профессиональным приборам – на расстояниях в сотни метров даже нивелир с точностью 0,1 мм/м может дать несколько сантиметров отклонения. Точность профессиональных моделей составляет от 0,05 до 0,3 мм.

Для моделей с типом электропитания от батарей или аккумуляторов учитывайте продолжительность непрерывной работы – у разных моделей она может составлять от 1,5 до 150 часов. Если время непрерывной работы у выбранной модели маловато, обратите внимание на возможность отключения «ненужных» лучей – это экономит заряд батареи и облегчает работу (лишние лучи не слепят глаза).

Варианты выбора лазерных нивелиров

Лазерные нивелиры начального уровня могут запросто заменить длинный неудобный «пузырьковый» уровень.

2D-нивелир значительно облегчит все работы, связанные с точной укладкой покрытий, труб, каналов и монтажных конструкций.

3D-нивелир позволит добиться идеального соответствия углов, элементов интерьера и отделки в помещениях сложной формы.

[url="https://www.dns-shop.ru/catalog/17a9cbf716404e77/niveliry-lazernye/?order=1&groupBy=none&stock=2&f=2kjm-czho-2kjo-2kjp-2kjq]Нивелир с максимальной дальностью 10-50 метров будет незаменимым помощником при выполнении множества отделочных работ.

[url="https://www.dns-shop.ru/catalog/17a9cbf716404e77/niveliry-lazernye/?order=1&groupBy=none&stock=2&f=2kjw-2kjv-czos-2kjs-d4xa-dbnf-iqjb]Лазерный нивелир с максимальным расстоянием от 100 метров может использоваться строителями для всех этапов работ – от выравнивания строительной площадки и подготовки фундамента, до возведения стен и укладки кровли.

Как выбрать лучший лазерный уровень?

Не все лазерные уровни созданы равными. При выборе лазерного уровня необходимо учитывать множество факторов, прежде чем покупать то, что может служить невероятно полезным инструментом выравнивания - если вы найдете тот, который предназначен для вашей задачи.

Вам понадобится проецируемый горизонтальный, вертикальный или сортировочный шаблон? Ваш проект в помещении или на улице?

Чтобы убедиться, что у вас есть подходящее устройство, вы должны полностью понимать природу вашего проекта, поскольку даже лазерные уровни высшего уровня предназначены для выполнения определенных функций, а не других.

При покупках по магазинам сравните следующие физические характеристики различных инструментов с потребностями вашего проекта и примите соответствующее решение.

Руководство по лазерным уровням для начинающих

Теперь ознакомьтесь с Руководством покупателя лазерного уровня по инфографике ниже, которое поможет вам определить различные типы и общие области применения лазерных уровней как в домашней реконструкции, так и в строительстве

Типы лазеров Уровни

Лазерные уровни подразделяются на три категории, каждая из которых функционирует по-разному и имеет свое применение.

Самый базовый тип называется лазерным уровнем с фиксированной точкой или точечным лазерным уровнем и обычно используется для более простых и нечастых строительных работ по дому.

После прочного крепления этот вид лазерного уровня излучает точку света на поверхность, которую можно перемещать, перемещая головку инструмента.

Stabila 03160 LA-5P Laser Bob 5-точечный лазер

Если ваш проект требует выравнивания как на горизонтальной, так и на вертикальной плоскостях, вам следует приобрести линейный лазерный уровень, который закреплен на поверхности, или штатив для проецирования вертикального и горизонтального поперечного сечения. -линий.

Этот лазерный уровень не является мобильным и его необходимо вручную перемещать из одной точки в другую, чтобы изменить проецируемые линии.

Достижения в области технологии сделали линейные лазерные уровни более простыми в настройке и менее дорогостоящими, но они остаются дороже, чем лазерные уровни с фиксированной точкой, и, как правило, более долговечны.

Нажмите здесь, чтобы прочитать мои последние обзоры уровня лазерной линии

.
Создание текстового лазерного проектора своими руками / Habr Давайте узнаем, как сделать достаточно простой лазерный проектор из электроники, который вы можете найти дома.

Введение


Существует два способа создания изображения с помощью лазера - векторное сканирование и растровое сканирование.

Во время векторного сканирования лазер перемещается вдоль контуров изображения, отключаясь только при переходе от одного контура к другому. Это означает, что лазер работает большую часть времени, создавая довольно яркое изображение.

Этот метод чаще всего используется в крупных промышленных лазерных проекторах, но для быстрого перемещения лазера требуется довольно сложное электромеханическое устройство - гальванометр. Цены начинаются от 80 долларов за пару, и это очень непрактично (хотя и возможно) сделать дома.

Второй метод - растровое сканирование. Там лазерный луч перемещается из стороны в сторону, рисуя изображение построчно. Этот метод используется в старых телевизорах и мониторах с ЭЛТ.

Поскольку вертикальные и горизонтальные перемещения выполняются неоднократно, механическая настройка требует гораздо более простой процедуры, чем векторное сканирование.Кроме того, поскольку изображение разделено на отдельные элементы, его намного проще программировать.

Основным недостатком растрового сканирования является то, что луч проходит через все элементы изображения, даже те, которые не нужно освещать, в результате чего изображение становится более тусклым. Но из-за простоты этот метод я выбрал для своего лазерного проектора.

Для перемещения лазерного луча вдоль линии (по горизонтали) есть очень удобный метод: использовать зеркало, вращающееся с постоянной скоростью.Поскольку вращение непрерывно, вы можете перемещать луч довольно быстро. Но переместить луч на другую линию сложнее.

Самый простой вариант - использовать несколько лазеров, направленных на вращающееся зеркало. Недостатком является то, что количество отображаемых линий будет определяться количеством используемых лазеров, что усложняет настройку, плюс вам потребуется достаточно большое зеркало. Но есть и плюсы - единственная движущаяся часть всей системы - это зеркало (меньше ломается), а использование нескольких лазеров может сделать изображение ярче.Вот пример проектора, построенного таким образом.

Другой метод сканирования, часто встречающийся в Интернете, - это комбинирование вертикального и горизонтального сканирования с использованием вращающегося зеркального барабана, в котором отдельные «грани» расположены под разными углами к оси вращения. Эта конфигурация зеркала заставляет лазерный луч отражаться под разными вертикальными углами, когда зеркало вращается, создавая вертикальное сканирование.

Несмотря на то, что получившийся проектор по своей сути довольно прост (вам нужен только лазер, зеркало с мотором и датчиком синхронизации), у этого метода есть большой недостаток - очень трудно построить многогранное зеркало дома.Обычно наклон «граней» должен быть идеально отрегулирован во время строительства, а требуемый уровень точности безумно высок.

Вот пример такого проектора.

Чтобы упростить для себя, я использовал другой метод сканирования - постоянно вращающееся зеркало для формирования горизонтального сканирования и периодически колеблющееся зеркало для вертикального сканирования.

Реализация


Горизонтальное сканирование

Где можно найти быстро вращающееся зеркало? Конечно, в старом лазерном принтере! В лазерных принтерах используется многоугольное зеркало, установленное поверх бесщеточного мотора, для сканирования лазерного луча вдоль бумаги.Двигатель обычно устанавливается сверху печатной платы, которая его контролирует.

У меня уже был зеркальный модуль от старого принтера:

Я не смог найти документацию для модуля или чипа внутри него, поэтому, чтобы определить расположение выводов модуля, мне пришлось перепроектировать его. Линии электропередачи легко найти - они подключены к единственному электролитическому конденсатору на печатной плате. Но простого включения двигателя недостаточно для его вращения - вам также необходимо подать тактовый сигнал для установки скорости вращения.Сигнал представляет собой простой меандр с частотой от 20 до 500-1000 Гц.

Чтобы найти правильную линию, я взял импульсный генератор, настроенный на 100 Гц, и подключил его (через резистор) к каждой доступной линии порта лазерного модуля. Как только сигнал поступает на правильную линию, двигатель начинает вращаться. Зеркало вращается достаточно быстро для наших целей - как будет показано позже, оно вращается со скоростью более 250 об / мин. Но, к сожалению, вращение двигателя сделало его довольно шумным. Это не проблема для моих экспериментов, но, безусловно, будет заметно, когда проектор будет готов и работает.Может быть, это можно смягчить, используя более новый зеркальный модуль или просто поместив модуль в коробку.

Laser

Для предварительных испытаний я использовал лазер от дешевой лазерной указки. Модуль должен быть настроен таким образом, чтобы он имел несколько степеней свободы - чтобы правильно направить лазер на зеркало.

Поскольку мы используем растровое сканирование, лазерный свет распределяется по всей области изображения, что делает изображение довольно тусклым - оно видно только в темноте.

Итак, гораздо позже, после того, как я успешно нарисовал изображение, я заменил лазерный модуль на более мощный - лазерный диод из DVD-плеера.

Предупреждение: лазеры DVD очень опасны и могут вас ослепить! При работе с лазером всегда используйте защитные очки!

И лазер, и многоугольные зеркальные модули были установлены на вершине небольшой деревянной доски. После подачи тактового сигнала на двигатель и подачи питания на лазер, вы должны направить лазер таким образом, чтобы луч попадал на края зеркала. В результате, пока зеркало вращается, вы получаете длинную горизонтальную линию.
Синхронизирующий фотодатчик

Чтобы микроконтроллер мог отслеживать положение движущегося лазерного луча, нам нужен фотодатчик.Но для этой цели я использовал фотодиод, перекрытый куском картона с небольшим отверстием посередине. Необходимо более точно отслеживать момент попадания луча на фотодиод.

Вот система крепления для фотодиода (без картона):

При нормальной работе отраженный лазерный луч должен сначала попадать на фотодиод, и только потом - зеркало вертикального сканирования.

После установки датчика я проверил его, подавая напряжение через резистор и наблюдая за сигналом с помощью осциллографа - его амплитуды было достаточно, чтобы подключить датчик непосредственно к входу GPIO микроконтроллера.

Вертикальное сканирование

Как я упоминал ранее, я использовал периодически колеблющееся зеркало для формирования вертикального сканирования. Как ты ведешь это? Самый простой способ - использовать электромагнит. Иногда люди просто монтируют зеркала на верхнюю часть компьютерных колонок, но это не особенно желательный вариант (результаты противоречивы, слишком сложно откалибровать).

В своей сборке я использовал двигатель BLDC от DVD-плеера для управления зеркалом вертикального сканирования. Так как проектор был предназначен для вывода текста, рисовать было не так много, а это означало, что зеркало должно быть только слегка наклонено.

Двигатель BLDC состоит из трех катушек, которые вместе составляют статор. Если одна из катушек подключена к положительно заряженному источнику питания, а две другие поочередно подключены к отрицательно заряженному источнику, ротор двигателя будет колебаться. Максимальная угловая развертка определяется конфигурацией двигателя, а именно - количеством полюсов. Для двигателя DVD это не превышает 30 градусов. Поскольку этот двигатель достаточно мощный и простой в управлении (требуются только две клавиши), этот двигатель очень хорошо подходит для нашей цели создания текстового лазерного проектора.

Так выглядит мотор с подключенным зеркалом:

Обратите внимание, что отражающая поверхность зеркала должна быть спереди - это значит, что она не закрыта стеклом.

Обзор

Вот как выглядит проектор в сборе:

Проекционный модуль рядом:

Многоугольное зеркало движется по часовой стрелке, поэтому лазерный луч перемещается слева направо.

Мощный лазерный диод DVD уже установлен (внутри коллиматора).Зеркало вертикальной развертки настроено таким образом, чтобы проецируемое изображение было направлено - в моем случае, к потолку моей комнаты.

Как видно из рисунка, лазер и механические части проектора управляются микроконтроллером STM32F103, установленным на небольшой отладочной плате (Blue Pill). Эта плата установлена ​​в макете.

Схема устройства:

Как я упоминал ранее, для управления двигателем с многоугольным зеркалом нам нужен только один сигнал - тактовый сигнал (POLY_CLOCK), который генерируется одним из таймеров STM32, работающих в режиме ШИМ.Его частота и коэффициент заполнения остаются неизменными во время работы проектора. Для питания двигателя я использую отдельный источник питания 12 В.

Два ШИМ-сигнала для управления зеркалом вертикального сканирования генерируются другим таймером микроконтроллера. Эти сигналы передаются через микросхему ULN2003A, которая управляет двигателем DVD. Таким образом, устанавливая различные коэффициенты заполнения для каналов ШИМ того времени, мы можем изменить угол поворота двигателя.

К сожалению, текущая версия проектора не предоставляет информацию о расположении зеркала.Это означает, что микроконтроллер может управлять зеркалами, но он не «знает» о своем текущем положении. Инерция ротора и индуктивность катушек вызывают некоторые задержки при изменении направления вращения.

Благодаря всему этому есть два основных следствия:

  • Плотность линий не постоянна, поскольку скорость вращения зеркала не может контролироваться;
  • Многие линии не работают. Зеркало вертикального сканирования колеблется в циклах, поэтому некоторые линии могут выводиться вверх дном, а другие - вверх дном.В результате, поскольку мы не можем отслеживать положение, линии могут отображаться только тогда, когда двигатель вращается определенным образом. Поскольку отображается только половина строк, яркость изображения уменьшается вдвое.

Тем не менее, отсутствие обратной связи делает устройство довольно простым в сборке.

Процесс формирования изображения также довольно прост:

  • Каждый раз, когда лазерный луч попадает на фотодиод, микроконтроллер генерирует прерывание. При этом прерывании текущая скорость горизонтального сканирования рассчитывается MCU.После этого специальный таймер синхронизации сбрасывается.
  • Этот таймер синхронизации генерирует собственные прерывания в определенные моменты во время горизонтального сканирования.
  • В частности, через некоторое время после синхронизации должен формироваться сигнал управления лазером. Мое устройство формирует его с помощью комбинации DMA + SPI. По сути, эти модули передают строку изображения на выход MOSI SPI в нужное время, по одному биту за раз.
  • После завершения вывода изображения лазер должен быть снова включен, чтобы фотодиод мог снова принять свой луч.

Лазерная модуляция осуществляется с помощью одного из ключей чипа ULN2003A. Резистор R3 необходим для защиты лазерного диода от перегрузки по току. Он установлен прямо на конце лазерного кабеля, изолирован. Для питания лазера я использовал подвесной источник питания. Важно контролировать потребление тока лазера и убедиться, что оно находится в допустимом диапазоне для конкретного лазерного диода.

Пример изображения (высота 8 строк):

Текст несколько не пропорционален, потому что проектор направлен на стену под углом.В настоящее время каждый цикл вертикального сканирования составляет 32 шага (1 шаг означает поворот многоугольного зеркала на 1 край).

Проектор может отображать 14 различных строк: все, что после этого начинает смешиваться с другими линиями, искажая изображение.

На фотографии в начале также используется 8-строчный шрифт, который позволяет несколько хорошо отображать даже две строки текста.

Шрифты 11x7 и 6x4 также поддерживаются в коде:

Пример «бегущего текста»:


Видео заставляет изображение мерцать вертикально, но на самом деле оно не видно.

Проект на GitHub.

Как выбрать лучшую лазерную рулетку?

Лазерная рулетка (также называемая лазерным дальномером) - это машина, в которой использует лазер для измерения расстояний .

Для профессионального подрядчика или серьезного любителя обустройства дома этот инструмент - огромное улучшение по сравнению с традиционной рулеткой.

Лазерная технология обеспечивает мгновенное чрезвычайно точное расстояние , что экономит ваше время и повышает качество вашей работы.

Он также позволяет вам самостоятельно выполнять любые измерения, в то время как традиционные рулетки требуют, чтобы два человека поддерживали уровень измерения при использовании на больших расстояниях.

Узнайте больше об этом универсальном инструменте с нижеприведенной инфографикой:

Лазерная рулетка Руководство покупателя Инфографика

Как работает лазерная рулетка?

Лазерная рулетка использует лазерный луч для определения расстояния до определенной точки.

Наиболее распространенная форма лазерной рулетки посылает лазерный импульс к объекту и измеряет, сколько времени требуется импульсу, чтобы отскочить от цели и вернуться к машине.

Bosch GLM 80 Лазерный дальномер

Этот процесс измерения часто называют «процессом оптического измерения» и может отображаться в нескольких единицах измерения.

Кому нужна лазерная рулетка?

Лазерная рулетка была бы полезна для всем, кто работает над проектом строительства или реконструкции , как профессиональным, так и любительским, таким как подрядчики, электрики, столярные изделия, каменная кладка, дизайнеры интерьера, домовладельцы и т. Д.

Быстро найти площадь стена, чтобы вы знали, сколько краски купить, или правильный угол, на котором можно построить крышу.

Это также было бы отличным инструментом для оценщиков недвижимости , поскольку они могли бы измерять размеры объекта с помощью пары нажатий кнопки вместо использования огромного ленточного колеса или другого мА

.

Смотрите также

  • Можно ли делать перепланировку в квартире
  • Разработка земельного участка
  • Как оформить лоджию внутри фото
  • Стекломагнезитовый лист применение
  • Виноград посадка осенью саженцами
  • Копалки для мотоблока чертежи
  • Как правильно сажать зимний чеснок и когда
  • Как сделать петуха из шишек
  • Подключение проводов в распределительной коробке
  • Почему нельзя варить арматуру в фундаменте
  • Как варить медную трубу
 

Copyright © 2019 OOO КОНТАКТ.
Все права защищены.